

Buratherm® N 9544/N

Standards und Freigaben

DVGW

KTW

WRC

■ W270 ■ HTB

■ BAM (max. 120 °C/130 bar)

■ TA-Luft

Lieferformen

■ Platten: 1.500 x 1.500 mm

■ Dicke: 0,5/ 0,8 mm

■ Platten: 2.000 x 1.500 mm

■ Dicke: 1,0/ 1,5/ 2,0/ 3,0 mm

Empfohlene Anwendungen

- Prozessindustrie
- Öl- und Gasindustrie
- Petrochemische Industrie
- Chemische Industrie
- Pharmazeutische Industrie
- Kraftwerkstechnik
- Zellstoff- und Papierindustrie
- Wasser- und Abwassertechnik
- Bergbauindustrie
- Zuckerindustrie
- Metallerzeugung und -verarbeitung
- Kreiselpumpen
- Kolbenpumpen
- Kompressoren
- Gebläse
- Lüfter
- Armaturen
- Wärmetauscher
- Flanschverbindungen
- Rohrverbindungen

Physikalische Kennwerte (Probendicke 2,0 mm)

Kennwert	Prüfnorm	Einheit	Wert*
Bezeichnung	DIN 28 091-2		FA-A 1-0
Dichte	DIN 28 090-2	[g/cm ³]	1,70
Zugfestigkeit	DIN 52 910		
längs		[N/mm ²]	18
quer		[N/mm ²]	14
Druckstandfestigkeit $\sigma_{ extsf{dE/16}}$	DIN 52 913		
175°		[N/mm ²]	37
300°C,		[N/mm ²]	30
Zusammendrückung	ASTM F 36 J	[%]	7
Rückfederung	ASTM F 36 J	[%]	60
Kaltstauchwert ϵ_{KSW}	DIN 28 090-2	[%]	6
Kaltrückverformungswert € _{KRW}	DIN 28 090-2	[%]	3
Warmsetzwert € _{WSW/200}	DIN 28 090-2	[%]	6
Warmrückverformungswert €WRW/200	DIN 28 090-2	[%]	2
Rückverformungswert R	DIN 28 090-2	[mm]	0,04
Spezifische Leckrate	DIN 3535-6	[mg/(m*s)]	≤ 0,1
Spezifische Leckrate $_{\lambda 2,0}$	DIN 28 090-2	[mg/(m*s)]	≤ 0,1
Medienbeständigkeit	ASTM F 146		
ASTM IRM903	5h/150°C		
Änderung Gewicht		[%]	≤ 10
Änderung Dicke		[%]	≤ 5
ASTM Fuel B	5h/23°C		
Änderung Gewicht		[%]	≤ 10
Änderung Dicke		[%]	≤ 5
Chloridgehalt (wasserlöslich)	FZT PV-001-133	[ppm]	≤ 50

Dichtungskennwerte nach DIN EN 13555 (02/2005)

T [°C]	Dichtheits- klasse L		O _{min(L)} O _{Smin(L)} [N/mm²]																	
						Q [N/mm ²]				Q [N/mm ²]					Q [N/mm ²]					
						20	40	60	80	20	40	60	80	20	40	60	80	40	60	80
		P _i [bar]				P _i [bar]				P _i [bar]					P _i [bar]	P _i [bar]				
		10	20	40	80	10				20					40	80				
	L _{1,0}	<5	<10	<10	<20	<5	<5	<5	<5	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	L _{0,1}	6	14	25	45	<5	<5	<5	<5	<10	<10	<10	<10		<10	<10	<10		14	<10
RT	L _{0,01}	31	48	67			12	<5	<5			19	<10				24			
	L _{0,001}	75							35											
	Q _{Smax}		Por										E _G							

	USmax		PQR			to the control of the																
	[N/mm²]	mm²] Steifigkeit 500 kN/mm											[N/mm²]									
			Q [N/r	nm²]			Q [N/mm²]															
		30	50	Q_{Smax}	10	20	30	40	50	60	70	80	100	120	140	160	180	200	220			
RT	>220	0,95	0,97	0,98	964	1197	1430	1662	1895	2128	2360	2593	3058	3524	3989	4454	4919	5385	5850			
100	120	0,89	0,91	0,93	983	1197	1410	1624	1838	2051	2265	2478	2906	3333								
200	80	0,85	0,88	0,89	1017	1249	1482	1714	1946	2179	2411	2644										
300	60	0,75	0,80	0,81	1901	2223	2545	2867	3189	3511												

Prüfabmessung: DN40/PN nach EN 1514-1: 49x92 mm

EagleBurgmann Marketing Germany

Buratherm® N 9544/N

Dichtungskennwerte nach DIN 28090-1, AD-Merkblatt B7, DIN V 2505, ASME-Code

DIN	28090 Tei	l 1 (9/95) (DIN E 2	505 Teil 2		AD-Merkbla DIN V 2505		ASN							
Pl	Dicke h _D	σ_{VU}	$\sigma_{ m VO}$	m			$\sigma_{ extsf{B0}}$		b _D : h _D	k _O xK _D	k ₁	m	у	У	
[bar]	[mm]	[N/mm ²]	[N/mm ²]				[N/mm ²]				[N/mm]	[mm]		[psi]	[N/mm ²]
					20°C	100°C	200°C	300°C	400°C						
	1,0	6	190	1,3	190	145	85	75	30	10 : 1	6 x b _D	1,3 x b _D	2,5	870	6
10	1,5	7	145	1,3	155	100	70	60	25	6,7 : 1	7 x b _D	1,3 x b _D	2,5	1015	7
	2,0	8	120	1,3	140	75	60	50	20	5:1	8 x b _D	1,3 x b _D	2,5	1160	8
	3,0	16	100	1,3	100	60	50	45	15	3,3 : 1	16 x b _D	1,3 x b _D	2,5	2320	16
	1,0	8	190	1,3	190	145	85	75	30	10 : 1	8 x b _D	1,3 x b _D	2,5	1160	8
16	1,5	9	145	1,3	155	100	70	60	25	6,7 : 1	9 x b _D	1,3 x b _D	2,5	1305	9
	2,0	10	120	1,3	140	75	60	50	20	5:1	10 x b _D	1,3 x b _D	2,5	1450	10
	3,0	25	100	1,3	100	60	50	45	15	3,3 : 1	25 x b _D	1,3 x b _D	2,5	3625	25
	1,0	13	190	1,3	190	145	85	75	30	10 : 1	13 x b _D	1,3 x b _D	2,5	1885	13
25	1,5	16	145	1,3	155	100	70	60	25	6,7 : 1	16 x b _D	1,3 x b _D	2,5	2320	16
	2,0	17	120	1,3	140	75	60	50	20	5:1	17 x b _D	1,3 x b _D	2,5	2465	17
	3,0	38	100	1,3	100	60	50	45	15	3,3 : 1	38 x b _D	1,3 x b _D	2,5	5510	38
	1,0	16	190	1,3	190	145	85	75	30	10 : 1	16 x b _D	1,3 x b _D	2,5	2320	16
40	1,5	21	145	1,3	155	100	70	60	25	6,7 : 1	21 x b _D	1,3 x b _D	2,5	3045	21
	2,0	26	120	1,3	140	75	60	50	20	5:1	26 x b _D	1,3 x b _D	2,5	3770	26
	3,0	53	100	1,3	100	60	50	45	15	3,3 : 1	53 x b _D	1,3 x b _D	2,5	7685	53

m Der m-Faktor ist ein Wert zur Beschreibung der Mindestflächenpressung im Betriebszustand. Es gibt bisher keine unumstrittene Prüfvorschrift. Der m-Faktor entzieht sich einer eindeutigen Betrachtungsweise und ist abhängig von der Dichtheitsklasse, der Temperatur und der Einbauflächenpressung. Im Rahmen des Brite EuRam Forschungsprojektes wurden für GR-Qualitäten als Durchschnittswerte m-Faktoren zwischen 1,3 und 3,8 gefunden. Es liegt im Ermessen des Anwenders, auch mit anderen Faktoren zu rechnen (z.B. m = 2).

m Die m-Faktoren aus DIN 28090 und ASME-Code sind unterschiedlich definiert, daher weichen die Zahlenwerte voneinander ab.

¹⁴⁵ psi Umrechnungsfaktor N/mm² in psi